China supplier Gerotor Hydraulic Motor Gerotor Hydraulic Motor Animation OMR Bmr Spline Shaft

Product Description

Gerotor hydraulic motor gerotor hydraulic motor animation OMR BMR  spline shaft

 

Product details:

product type BMR motors
displacement 80cc
flange 2-φ13.5Rhomb-flange pilot φ82.5×8
shaft spline SAE 6B
oil ports G1/2 manifold mount 4-M8,G1/4

Main Specifications:
 
Technical data for BMR with 25 and 1 in and 1 in splined and 28.56 tapered shaft:
 

Type BMR
BMRS
36
BMR
BMRS
50
BMR
BMRS
80
BMR
BMRS
100
BMR
BMRS
125
BMR
BMRS
160
BMR
BMRS
200
BMR
BMRS
250
BMR
BMRS
315
BMR
BMRS
375
Geometric displacement (cm3/rev.) 36 51.7 81.5 102 127.2 157.2 194.5 253.3 317.5 381.4
Max. speed (rpm) cont. 1085 960 750 600 475 378 310 240 190 155
int. 1220 1150 940 750 600 475 385 300 240 190
Max. torque (N·m) cont. 72 100 195 240 300 360 360 390 390 365
int. 83 126 220 280 340 430 440 490 535 495
peak 105 165 270 320 370 460 560 640 650 680
Max. output (kW) cont. 8.5 9.5 12.5 13 12.5 12.5 10 7 6 5
int. 9.8 11.2 15 15 14.5 14 13 9.5 9 8
Max. pressure drop (MPa) cont. 14 14 17.5 17.5 17.5 16.5 13 11 9 7
int. 16.5 17.5 20 20 20 20 17.5 15 13 10
peak 22.5 22.5 22.5 22.5 22.5 22.5 22.5 20 17.5 15
Max. flow (L/min) cont. 40 50 60 60 60 60 60 60 60 60
int. 45 60 75 75 75 75 75 75 75 75
Weight (kg) 6.5 6.7 6.9 7 7.3 7.6 8 8.5 9 9.5

 

Technical data for BMR with 31.75 and 32 shaft:

 

Type BMR
BMRS
36
BMR
BMRS
50
BMR
BMRS
80
BMR
BMRS
100
BMR
BMRS
125
BMR
BMRS
160
BMR
BMRS
200
BMR
BMRS
250
BMR
BMRS
315
BMR
BMRS
375

Geometric displacement
(cm3 /rev.)

36 51.7 81.5 102 127.2 157.2 194.5 253.3 317.5 381.4
Max. speed (rpm) cont. 1250 960 750 600 475 378 310 240 190 155
int. 1520 1150 940 750 600 475 385 300 240 190
Max. torque (N·m) cont. 72 100 195 240 300 380 450 540 550 580
int. 83 126 220 280 340 430 500 610 690 690
peak 105 165 270 320 370 460 560 710 840 830
Max. output (kW) cont. 8.5 9.5 12.5 13 12.5 12.5 11 10 9 7.5
int. 9.8 11.2 15 15 14.5 14 13 12 10 9
Max. pressure drop (MPa) cont. 14 14 17.5 17.5 17.5 17.5 17.5 17.5 13.5 11.5
int. 16.5 17.5 20 20 20 20 20 20 17.5 15
peak 22.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5 21 17.5
Max. flow (L/min) cont. 45 50 60 60 60 60 60 60 60 60
int. 55 60 75 75 75 75 75 75 75 75
Weight (kg)   6.5 6.7 6.9 7 7.3 7.6 8 8.5 9 9.5

* Continuous pressure:Max.value of operating motor continuously.
* Intermittent pressure:Max.value of operating motor in 6 seconds per minute .
* CHINAMFG pressure:Max.value of operating motor in 0.6 second per minute.

Crossing types

DAN FOSS Hydraulic Motors

  • OMM
  • OMP
  • OMR
  • OMS
  • OMH
  • OMT
  • OMV

 

M+S Hydraulic Motors

  • MM/MLHM
  • MP/MLHP
  • MR/MLHR
  • MH/MLHH
  • MS/MLHS
  • MT/MLHT
  • MV/MLHV

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Model No.: Bmr
Displacement: 80 Cc
Flange: 2 Bolt
Shaft: Spline Shaft
Suit for: Hydraulic Repair and System Build Market
Feature 1: OEM Replace
Customization:
Available

|

Customized Request

spline shaft

How do spline shafts handle variations in torque and rotational force?

Spline shafts are designed to handle variations in torque and rotational force in mechanical systems. Here’s a detailed explanation:

1. Interlocking Splines:

Spline shafts have a series of interlocking splines along their length. These splines engage with corresponding splines on the mating component, such as gears or couplings. The interlocking design ensures a secure and robust connection, capable of transmitting torque and rotational force.

2. Load Distribution:

When torque is applied to a spline shaft, the load is distributed across the entire engagement surface of the splines. This helps to minimize stress concentrations and prevents localized wear or failure. The load distribution capability of spline shafts allows them to handle variations in torque and rotational force effectively.

3. Material Selection:

Spline shafts are typically made from materials with high strength and durability, such as alloy steels. The material selection is crucial in handling variations in torque and rotational force. It ensures that the spline shaft can withstand the applied loads without deformation or failure.

4. Spline Profile:

The design of the spline profile also contributes to the handling of torque variations. The spline profile determines the contact area and the distribution of forces along the splines. By optimizing the spline profile, manufacturers can enhance the load-carrying capacity and improve the ability of the spline shaft to handle variations in torque.

5. Surface Finish and Lubrication:

Proper surface finish and lubrication play a crucial role in the performance of spline shafts. A smooth surface finish reduces friction and wear, while suitable lubrication minimizes heat generation and ensures smooth operation. These factors help in handling variations in torque and rotational force by reducing the impact of friction and wear on the spline engagement.

6. Design Considerations:

Engineers take several design considerations into account to ensure spline shafts can handle variations in torque and rotational force. These considerations include appropriate spline dimensions, tooth profile geometry, spline fit tolerance, and the selection of mating components. By carefully designing the spline shaft and its mating components, engineers can optimize the system’s performance and reliability.

7. Overload Protection:

In some applications, spline shafts may be equipped with overload protection mechanisms. These mechanisms, such as shear pins or torque limiters, are designed to disconnect the drive temporarily or slip when the torque exceeds a certain threshold. This protects the spline shaft and other components from damage due to excessive torque.

Overall, spline shafts handle variations in torque and rotational force through their interlocking splines, load distribution capability, appropriate material selection, optimized spline profiles, surface finish, lubrication, design considerations, and, in some cases, overload protection mechanisms. These features ensure efficient torque transmission and enable spline shafts to withstand the demands of various mechanical systems.

spline shaft

Can spline shafts be applied in aerospace and aviation equipment?

Yes, spline shafts are commonly applied in aerospace and aviation equipment due to their ability to transmit torque and provide precise rotational motion. Here’s how spline shafts are used in the aerospace and aviation industry:

1. Aircraft Engines:

Spline shafts are utilized in aircraft engines for various purposes. They can be found in the engine’s accessory gearbox, where they transmit torque from the engine to drive auxiliary components such as fuel pumps, hydraulic pumps, generators, and engine starters. Spline shafts are also present in the engine’s variable geometry systems, which control the position of components like variable stator vanes or variable inlet guide vanes.

2. Flight Control Systems:

Spline shafts play a vital role in aircraft flight control systems. They are employed in the actuators and control mechanisms that operate the flaps, ailerons, elevators, rudders, and other control surfaces. Spline shafts enable precise and efficient transfer of control inputs from the cockpit to the respective control surfaces, contributing to the maneuverability and stability of the aircraft.

3. Landing Gear:

Spline shafts are used in the landing gear systems of aircraft. They can be found in components such as the landing gear actuator, which extends and retracts the landing gear, and the steering mechanism that controls the nose wheel. Spline shafts in landing gear systems need to withstand high loads, provide reliable operation, and ensure precise movement for safe and smooth landings and takeoffs.

4. Helicopter Rotors:

Helicopters rely on spline shafts in the main rotor assembly. The main rotor shaft, which transfers power from the helicopter’s engine to the rotor blades, often incorporates splines to ensure a secure connection and efficient torque transmission. Spline shafts are critical for maintaining stable and precise rotation of the rotor blades, allowing for controlled lift and maneuverability.

5. Auxiliary Systems:

Spline shafts are also applied in various auxiliary systems in aerospace and aviation equipment. These include systems such as power transmission for onboard generators, environmental control systems, fuel control systems, and hydraulic systems. Spline shafts in these applications contribute to the reliable operation and efficient functioning of the auxiliary equipment.

In aerospace and aviation applications, spline shafts are designed to meet stringent requirements for strength, durability, precision, and weight reduction. They are often made from high-strength materials such as titanium or alloy steel to withstand the demanding operating conditions and weight constraints of aircraft. Additionally, advanced manufacturing techniques are employed to ensure the dimensional accuracy and quality of spline shafts for critical aerospace applications.

The use of spline shafts in aerospace and aviation equipment enables precise control, efficient power transmission, and reliable operation, contributing to the safety, performance, and functionality of aircraft and related systems.

spline shaft

In which industries are spline shafts typically used?

Spline shafts find applications in a wide range of industries where torque transmission, relative movement, and load distribution are critical. Here’s a detailed explanation:

1. Automotive Industry:

The automotive industry extensively uses spline shafts in various components and systems. They are found in transmissions, drivelines, steering systems, differentials, and axle assemblies. Spline shafts enable the transmission of torque, accommodate relative movement, and ensure efficient power transfer in vehicles.

2. Aerospace and Defense Industry:

Spline shafts are essential in the aerospace and defense industry. They are used in aircraft landing gear systems, actuation mechanisms, missile guidance systems, engine components, and rotor assemblies. The aerospace and defense sector relies on spline shafts for precise torque transfer, relative movement accommodation, and critical control mechanisms.

3. Industrial Machinery and Equipment:

Spline shafts are widely employed in industrial machinery and equipment. They are used in gearboxes, machine tools, pumps, compressors, conveyors, printing machinery, and packaging equipment. Spline shafts enable torque transmission, accommodate misalignments and vibrations, and ensure accurate movement and synchronization of machine components.

4. Agriculture and Farming:

The agriculture and farming industry extensively uses spline shafts in equipment such as tractors, harvesters, and agricultural implements. Spline shafts are found in power take-off (PTO) units, transmission systems, hydraulic mechanisms, and steering systems. They enable torque transfer, accommodate relative movement, and provide flexibility in agricultural machinery.

5. Construction and Mining:

In the construction and mining industries, spline shafts are used in equipment such as excavators, loaders, bulldozers, and drilling rigs. They are found in hydraulic systems, power transmission systems, and articulated mechanisms. Spline shafts facilitate torque transmission, accommodate misalignments, and enable efficient power transfer in heavy-duty machinery.

6. Marine and Offshore:

Spline shafts have applications in the marine and offshore industry. They are used in propulsion systems, thrusters, rudders, winches, and marine pumps. Spline shafts enable torque transmission in marine vessels and offshore equipment, accommodating axial and radial movement, and ensuring reliable power transfer.

7. Energy and Power Generation:

Spline shafts are utilized in the energy and power generation sector. They are found in turbines, generators, compressors, and other rotating equipment. Spline shafts enable torque transmission and accommodate relative movement in power generation systems, ensuring efficient and reliable operation.

8. Rail and Transportation:

Spline shafts are employed in the rail and transportation industry. They are found in locomotives, railcar systems, and suspension mechanisms. Spline shafts enable torque transfer, accommodate movement and vibrations, and ensure precise control in rail and transportation applications.

These are just a few examples of the industries where spline shafts are typically used. Their versatility, torque transmission capabilities, and ability to accommodate relative movement make them vital components in various sectors that rely on efficient power transfer, flexibility, and precise control.

China supplier Gerotor Hydraulic Motor Gerotor Hydraulic Motor Animation OMR Bmr Spline Shaft  China supplier Gerotor Hydraulic Motor Gerotor Hydraulic Motor Animation OMR Bmr Spline Shaft
editor by CX 2024-03-11

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *